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Abstract

In this paper, we propose that dynamic course core has an essential role in developing teacher's
subject matter knowledge of mathematics. We are presenting three technology based mathemati-
cal conceptual activities designed to improve teachers' mathematical knowledge for teaching the
mean value theorem, the Cauchy mean value theorem, the inverse image of parametric curves, and
the global minimum of total squared distances among non-intersecting curves or surfaces. These
activities can help to develop teachers' representational �uency of aforementioned topics. They
can also deepen teachers' conceptual understanding of these mathematical constructs through
the use of technological tools in teachers' education and mathematics instruction.

1 Introduction
As mathematics educators in any part of the world, we would like to see mathematics teachers who
posses the following quali�cations:

1. have strong professionally situated knowledge, such as mathematical knowledge for teaching;

2. competent in their procedural and conceptual knowledge of mathematics; and
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3. present evidence of professional competence to promote and scaffold this knowledge among
their students.

In this paper, we address how these goals can be archived through the innovative use of technolog-
ical tools in teachers' education as well as in school mathematics instructions. Readers are presented
with three speci�c technology based activities that address the following mathematical topics: the
mean value theorem, the Cauchy mean value theorem, the inverse image of parametric curves, and
the global minimum of total squared distances among non-intersecting curves or surfaces. We propose
these types of activities should be included as part of dynamic core of a mathematics curriculum.

2 Developing Mathematical Knowledge for Teaching
Mathematics educators developed a construct of teachers' mathematical knowledge for teaching
(MKT), that consists of:

� common content knowledge (CCK) de�ned as mathematical knowledge used in settings outside
of teaching,

� specialized content knowledge (SCK) de�ned as mathematical knowledge and skills used in
teaching,

� knowledge at the mathematical horizon (KMH) de�ned as knowledge of how mathematical
topics relate to other mathematics ideas in the curriculum,

� knowledge of content and students (KCS) de�ned as a type of knowledge intertwined with
knowledge of how students think, know, or learn a given topic,

� knowledge of content and teaching (KCT) de�ned as ability to make decisions on sequencing
of activities, awareness of possible advantages and disadvantages of representations used, and
ability to conduct quality classroom discourse, and

� knowledge of curriculum (KC) (see [1,8]).

MKTwas developed based on Lee Shulman's original construct of teachers' subject matter knowl-
edge (SMK) and pedagogical content knowledge (PCK) ([12,13]). In this paper, we are presenting
ways where teachers can increase their CCK, SCK and KMH (constructs that correspond to Shul-
man's SMK) through the integration of Dynamic Geometry Software and Computer Algebra System.
We propose that a course containing both static and dynamic cores can help teachers to develop

their subject matter knowledge. We de�ne static core (SC) as the essence of a course based on the
identi�ed mathematical goals and objectives, and describe dynamic core (DC) of a course as part that
includes opportunities for new discoveries using available technological tools. We think that there is
a relationship between both static and dynamic cores. It reminds us the bicycle mechanism of two
wheels connected by a chain. Affect of the DC can bring a type of change in mathematics classroom
discourse that leads to learners' development of conceptual knowledge of mathematics (achieved by
constructing the relationships between pieces of information in mathematics), and preservice teach-
ers' development of SCK and KMH. In addition, this affect of dynamic core brings `motion' to a
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static core that can be responsible for development of learners' procedural knowledge (composed of
symbol representation system of mathematics, and algorithms, or rules for completing mathematical
tasks) of mathematics and preservice teachers' CCK of mathematics. On the other hand, the imple-
mentation of static core can transform a classroom discourse in a way that might affect the quality of
learners' engagement with dynamic core. As learners develop more procedural knowledge and teach-
ers develop more common content knowledge, they can continue to acquire conceptual knowledge,
specialized content knowledge, and horizon content knowledge of mathematics.
We suggest that technology can be used to develop teachers' CCK in section 3.1 and SCK by

presenting two examples in section 3.2; more speci�cally, as an essential part of growth in teachers'
CCK and SCK, we consider their development of conceptual knowledge and procedural knowledge
of mathematics that are linked to the conceptual knowledge ([5,6,7]). Haapasalo and Kadijevich
provided an in-depth critical analysis of the literature on conceptual and procedural knowledge ([7]).
They described conceptual knowledge as being dynamic in nature and synthesized the following
distinction:

� �Procedural knowledge denotes dynamic and successful utilization of particular rules, algo-
rithms or procedures within relevant representation forms(s). . . . it often calls for automated
and unconscious steps.

� Conceptual knowledge denotes knowledge of a skilful drive along particular networks, the ele-
ments of which can be concepts, rules. . . , and even problems. . . given in various representation
forms. . . it typically requires conscious thinking.� ([7]).

Researchers farther provide critical analysis of the different views, such as inactivation view, si-
multaneous activation view, dynamic interaction view, generic view, of relationships of procedural and
conceptual knowledge discussed in the education literature ([6,7]). We believe that conceptual knowl-
edge may have a greater in�uence on procedural knowledge than the reverse. In other words, if time
is an essence, we chose to focus on development of conceptual knowledge prior to development of
procedural knowledge. Haapasalo states that "it seems appropriate to claim that the goal of any educa-
tion should be to invest in conceptual knowledge from very beginning." ([6]). As researchers con�rm
this approach has been accepted by the international community of mathematics educators in many
countries ([5,6]). In addition, several non-academic reports support the aforementioned approach. In
2001, as reported by the Beijing Youth Daily, the standards of National Curriculum in China have
indicated that: a) ��ll the duck� (rote learning) approach of teaching should be replaced by more
application, modeling and real life problems; and b) diverse standards of measuring students' success
in mathematics should be used ([22]). This is an example where an education system that was tra-
ditionally focused on development of students' procedural knowledge is recognizing the importance
of development of students' conceptual understandings through use of rich application problems. In
another example, as reported by Lien Her Bao in September of 2000 the ministry of education in Tai-
wan stated that focus in mathematics classroom should not be complicated algebraic manipulations
as they can be replaced by using calculators and or computers ([23]). This is another international
example where technology use is suggested to change the focus of instruction from procedural and
rote activities to more conceptual ones. One of our main goals in this paper is to create technology
based activities, as part of the dynamic course core that helps to develop teachers' conceptual knowl-
edge. More mathematics concepts, as well as more challenging mathematics can be explored in depth

118



The Electronic Journal of Mathematics and Technology, Volume 4, Number 2, ISSN 1933-2823

by using technological tools in a mathematics classroom. These conceptual activities can also affect
teachers' content knowledge for teaching and in�uence students learning of mathematics. ([18]). We
assume that well implemented static and dynamic cores create such classroom discourse that allows
students to build conceptual understanding of mathematics through representational �uency.

3 Technology for Developing Representational Fluency
For the past 25 years researchers have been discussing the role of technology in the mathematics
classroom. They noted by using multiple representations, technology allows making connections and
showing complex mathematical ideas that would be dif�cult to explore otherwise ([17]). Certain
observations in mathematics would be very dif�cult for students without the help of technological
tools. Using visual, graphical, numeric and geometric representation for abstract concepts makes
mathematics more intuitive, interesting and accessible to a larger population of diverse learners. Geo-
metrical interpretations of a problem introduced prior to algebraic interpretations can provide crucial
intuition and motivation for learners grasping key concepts when solving a problem. The intuition
can further assist teachers setting up mathematical conjectures and strategies of how to manipulate
computer algebra systems (CAS) to verify their conjectures ([9]). Engaging with externalized repre-
sentations through technology can allow students and teachers unique opportunities for exploration,
discovery and revealing cognitive con�icts ([6]). Technology allows an access facilitated through a
variety of technological capabilities to mathematical content that had not previously been included in
the schools' curriculum. One of the most important technological capabilities is the power to provide
accommodation for �multiple representations, hot-linked and interactive, and a key construct related
to the availability of these representations is representational �uency� ([18]). Representational �u-
ency referred to the interaction between representation and a learner, generally signifying learner's
ability to move among various representations, drawing and transporting the meaning of a mathe-
matical construct from one representation to another and gathering more knowledge about construct
from every representation ( [2,11,18]). Using multiple representations and developing representa-
tional �uency can support the development of conceptual knowledge and allow learners to relate
procedural and conceptual knowledge ([5]). The activities below are designed to assist teachers to
develop representational �uency in order to further improve their content knowledge for teaching of
the aforementioned mathematical topics.

3.1 Memorizing a formula will only last for a test
It is natural to conjecture that if we introduced more geometric and graphic representations or mo-
tivations before involving complex algebraic manipulations, many students may have not lost their
interests in mathematics so early. We hope evolving technological tools can assist pre-service teach-
ers in learning adequate content in mathematics before they start teaching.
Confucius said `Give a man a �sh and you feed him for a day; teach a man to �sh and you feed

him for a lifetime'. We may say: Memorize a formula and you pass one exam; comprehend a formula
and you discover more mathematics in a lifetime.
Many of us encountered the distance from a point P (x1; y1; z1) to the plane ax+ by+ cz+ d = 0
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to be
jax1 + by1 + cz1 + djp

a2 + b2 + c2
(1)

in high school. Authors recalled that we hardly cared how this formula was derived because there
is no time to worry about the derivation during a 50 minute test. Instead of deriving this formula
as part of static core, which can help to develop procedural knowledge, we present below one way
technological tools can be used to help teachers to present this mathematical content focusing on
conceptual knowledge development. This is an example of dynamic course core.
There are two important concepts in vector calculus, one is the dot product, �!a � �!b ; and the other

is the cross product, �!a � �!b ;where �!a and �!b are two vectors in Rn: However, most students would
only remember the de�nition of �!a � �!b as

P
aibi or jaj jbj cos �; or interpret this wrongly as the area

of the parallelogram determined by �!a and �!b when �!a and �!b are two vectors in R2: Some students
disagree that�!a � �!b represents the area of the parallelogram determined by�!a and�!b ; not because they
understand completely the geometric interpretations of �!a � �!b and �!a � �!b respectively, but because
they memorize the formula that the area of the parallelogram determined by �!a and �!b should be�!a ��!b  but not �!a � �!b : Thus we explore �!a � �!b and �!a � �!b in more detail. For two vectors �!a
and

�!
b in 2D, �!a � �!b represents the area of the parallelogram determined by �!a and �!b ?;where

�!
b ? is

the vector that is perpendicular to
�!
b ; and with the same magnitude as

�!
b :We may summarize this by

observing the Figures 1(a) and 1(b), and encourage readers to explore this further by using the Java
applet developed by IES of Japan ([19]).

Figures 1(a) and 1(b) Dot product

For two vectors �!a and �!b in 2D, it follows from the de�nition of cross product �!a � �!b =

(kak kbk sin �) �!n , where �!n is a unit vector perpendicular to both �!a and �!b and whose direction is
given by the right-hand rule, that the magnitude

�!a ��!b  is equal to the area of the parallelogram
determined by �!a and �!b : The java applet in [20] allows us to visualize this fact from a geometric
point view.
Combining the ideas we explored on �!a � �!b and �!a � �!b ; it is not hard to understand why the
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volume of the parallelepiped determined by three vectors �!a ;�!b and �!c in 3D can be written as����!a � ��!b ��!c ���� (2)

= kak
�!b ��!c  jcos �j ; (3)

where � is the angle between the normal vector �!n of the plane determined by �!b and �!c and the
vector �!a : This can be further explored by using a Java applet (see [21]). Furthermore, the quantity
kak (jcos �j) represents the height of the parallelepiped and it can also be used to �nd the distance
from a point to a plane, which we omit here.
Through exploration above, we discover that the volume of the parallelepiped determined by

three vectors �!a ;�!b and �!c ; is actually equal to the area of a parallelogram determined by �!a and��!
b ��!c

�
?
;which is a vector that is perpendicular to

�!
b � �!c and with the same magnitude as

�!
b � �!c ; we note that vector

��!
b ��!c

�
?
can be any vector lying on the plane determined by

�!
b and

�!c :We `discovered' an additional observation, which is not mentioned in a regular textbook. Thus, it
is not hard to conjecture that more interesting mathematics concepts can be explored and discovered
due to the advancement of technological tools. As part of dynamic course core this activity can allow
teachers to create the type of classroom discourse that promotes students' develop of their conceptual
understanding of mathematics. This activity can also help teachers to develop their own specialized
content knowledge and horizon content knowledge.
We demonstrate below another example of a traditionally static core, Mean Value or CauchyMean

Value Theorem, done differently. In this case, we are using geometric representation of traditional
theorems. This makes the proof more interesting and intuitive.

Example 1 About the proofs for the Mean Value or Cauchy Mean Value Theorems. These two theo-
rems are very often used in applied mathematics. However, when it comes to the proof of either one
of these theorems, it is not surprising that not many people can recall the proof.

For example, the Mean Value Theorem can be stated below:
Suppose the function f : [a; b]! R is continuous on [a; b] and differentiable on (a; b). Then there

is a point x0 in (a; b) at which

f 0(x0) =
f(b)� f(a)
b� a :

To prove this theorem, in many traditional text books, one introduces the function h de�ned at
each number x by the following equation:

h(x) = f(x)�
�
f(b)� f(a)
b� a

�
(x� a): (4)

Then we use the fact that h satis�es the conditions for Rolle's theorem to deduce that there is a
point c in (a; b) such that h0(c) = 0, and the Mean Value Theorem follows. However, we can inspire
students to see how the function h is constructed from a geometric point of view. Suppose the blue
curve (the darker curve) is given by f(x) = cos(x) and satis�es the conditions of the Mean Value
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theorem over the interval covering (a; b) = (��
2
; 0:725) shown in Figure 2 below. We connect the

line segment AB, where A = (��
2
:0) and B = (0:725; f(0:725)) lying on y = f(x) and ask the

following question:
If we rotate line segment AB (while AB is attached to the graph of the function) so that AB

becomes a horizontal line segment, how would the graph of the original function appear? We refer
readers to the paper in [15], and explore that the curve in green or the lighter color is exactly the
function h(x) we are looking for by observing

distance EF = distance GD;

and we apply the Rolle's Theorem on h(x).

Figure 2. The graphs of two functions and a chord

We can prove the Cauchy Mean Value Theorem (CMV) in a similar manner. The statement of
CMV can be seen below:
Suppose the function f : [a; b] ! R and g : [a; b] ! R are continuous and that their restrictions

to (a; b) are differentiable. Moreover, assume that g0(t) 6= 0 for all t in (a; b): Then there is a point t
in (a; b) at which

f(b)� f(a)
g(b)� g(a) =

f 0(t)

g0(t):

We (again) see little geometric motivation of why we have two functions f and g and how the con-
clusion is obtained. In [15], we summarize how we can prove the CMV geometrically by extending
the idea we described above when proving the MVT.

1. Assume functions f and g satisfy the condition of the Cauchy Mean Value Theorem, the Theo-
rem holds, can be interpreted as any number t for which the parametric curve P de�ned by the
equation

P (t) = [g (t) ; f (t) ]

for a � t � b has slope equal to the slope of the secant that runs from the point (g (a) ; f (a))
to the point (g (b) ; f (b)).
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2. Equivalently, if we apply the Mean Value Theorem to the graph of a polar equation r = h(t),
by writing the polar equation in a parametric form

[x(t); y(t)] = [h(t) cos(t); h(t) sin(t)] = [g(t); f(t)]; (5)

we obtain the conclusion of Cauchy Mean Value Theorem (see [15] for details).

Through this example, we see that graphical and geometrical animations can make some unin-
spired proofs from traditional static content more accessible and interesting to more learners. It can
also allow learners to gain additional insight to the meaning of mathematics by examining multiple
representations. The Computer Algebra System (CAS) provides the thrust to the analytical proofs
and makes mathematics challenging when students are inspired to investigate problems further.

3.2 Content evolve when technological tools advance
Part of specialized content knowledge is teachers' ability to present mathematics in the context that
is relevant to their students and to make connection between theoretical mathematics and situations
that appear �psychologically meaningful for students� ([5]). We further use the following two exam-
ples to demonstrate how theoretical mathematical ideas may be integrated in such 'psychologically
meaningful' context. In these examples learners are presented with multiple representations of the
mathematical topic, such as orthotomic and the caustic curves. This �ts well with why the National
Science Foundation of the USA is pushing the Science, Technology, Engineering and Mathematics
(STEM) Program (see [24]). We need to integrate mathematics teaching with other applied disci-
plines. Students learn the concept of �nding the inverse for a function, f(x); in Pre-Calculus is to �nd
a function g(x) so that the graphs of y = f(x) and y = g(x) are symmetric to y = x:Many software
including graphic calculators allow users to explore �nding the inverse image of a parametric curve
with respect to a slanted line y = mx+ b; see Figure 3 below, that is described in [16]. Students can
create many interesting pictures but one would wonder how the drawing mirror image with respect to
a slanted line is related to mathematics.

Figure 3. A re�ection of Hypocycloid with respect to y=2x+1:
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Example 2 We extend the ideas of �nding the inverse image of a parametric curve with respect to
a foxed slanted line y = mx + b to the idea of �nding the re�ection of a light source B on a curve
C1 with respect to a moving point P on C2 (speci�cally with respect to a moving tangent line at the
point P on C2), which we call B0: The locus of the point B0 is called the orthotomic curve and it is
linked to the concept of a caustic curve [link to a video clip]. The concepts can be extended to the
corresponding concepts in 3-D.

The complete description on this problem can be found in [16]. We shall see how technological
tools can aid us to explore this complex ideass-in the area of Optics in Physics-with ease. We refer to
Figure 4(a) below, where C1 = [x1(t); y1(t)] = [2 cos t � cos 2t; 2 sin t � sin 2t]; t 2 [0; 2�] (shown
as cardioid), and C2 = [s; f(s)] = [s;�2 + sin(s)] (shown as a sinusoidal curve below). We pick a
light source B on C1; and set C3 = [p(t); q(t)] to be the re�ection of C1 with respect to the tangent
line to C2 at a point P: For a �xed point B on C1 (light source at a point on C1); the re�ection of B
on a curve C1 with respect to a moving point P on C2, which we call B0; the locus of the point B0 is
called the orthotomic curve. Then we have the following observations:

1. The orthotomic curve of C2 relative to B is shown in Figure 4(b) which can be experimented
with by using a dynamic geometry software such as Geometry Expression ([26]) and veri�ed
by using a CAS such as Maple (See [27]).

Figure 4(a) Original Curve and Figure 4(b) Original and its Orthotomic Curve

2. Picking another light source C on C1 we obtain another orthotomic curve of C2 relative to C
(shown in black or darker curve in Figure 4(c)). We immediately discover the following obser-
vation by the `dragging' mode with Geometry Expression. (see Figure 4(c)): As B approaches
C;the orange orthotomic curve (or the lighter curve) approaches the black orthotomic curve
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(the darker curve).

Figure 4(c) Two Orthotomic Curves

3. The sharp corner (cusp) of the black orthotomic occurs at the in�ection point of C2:

In the past, all of the observations above would have been dif�cult to be realized without a proper
technological tool.
In Optics, we have often heard the term `caustic curve'. This can be viewed as the envelope of rays

re�ected by a curve. We �rst note that the evolute of a curve C is the set of all its centers of curvature;
it is equivalent to the envelope of all the normals to C. It can be shown that the caustic generated by
rays re�ected by a curve C from a light source O (caustic of C relative to O) is equivalent to �nding
the evolute of the orthotomic of C relative to O. Or equivalently, the caustic curve is the centers
of curvature of the family of orthotomic normals of a given curve relative to O. We shall use a java
applet (see [25]) to explore the relationship between the orthotomic and caustic curves, which are
dif�cult concepts otherwise. We describe proposed activity as follows:

� Step 1: Create the original curve so that it roughly resembles an ellipse (see Figure 5):

Figure 5. Creating a curve
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� Step 2: Next, select the curves and click on `Orthotomic Curve', the picture should look like
Figure 6. Note the red center dot is the light source.

Figure 6. Original curve and its orthotomic curve

� Step 3: Now choose the Family of Orthotomic Normals, the picture should look like Figure 7:

Figure 7. Original curve, its orthotomic and the evolute of the orthotomic

� Step 4: Click on the Caustics and note the following graph, we see that the caustic curve is the
set of centers of curvature of the family of orthotomic normals of a given curve relative to O
(the red or center dot).

Figure 8. Original curve, its orthotomic and the caustic curve

We shall see these geometric observations in Figure 8 above are consistent with algebraic ap-
proaches, which can be veri�ed when a computer algebra system such as Maple is used. For example,

126



The Electronic Journal of Mathematics and Technology, Volume 4, Number 2, ISSN 1933-2823

we consider the ellipse [7
5
cos s; 6

5
sin s]; where s 2 [0; 2�], which simulates the black curve in Figure

8. The orthotomic curve of the ellipse relative to the origin, O; can be shown (see [16]) to be26664
� sin(2 arctan(6 cos s

7 sin s
))(�6

5
sin s� 6 (cos(s)

2)

5 sin s
)

� cos
�
2 arctan

�
6 cos s

7 sin s

�� 
�6
5
sin s� 6

5

(cos s)2

sin s

!
+ 6

5
sin s+

6 (cos s)2

5 sin s

37775 ; (6)

which simulates the pink curve in Figure 8. We plot the original ellipse (in green or inner ellipse), its
orthotomic curve (in blue or outer ellipse), and its caustic curve, can be shown to be the curve shown
in red (or in the center of the inner ellipse), together in Figure 9.

Figure 9. An ellipse, its orthotomic and caustic curves

We notice that three curves obtained in Figure 8 is indeed similar to corresponding curves de-
scribed in Figure 9 and yet Figure 8 was obtained by exploring the concepts from a geometric point
of view, which is accessible to anyone who would like to play with graphs, and yet Figure 9 is obtained
after thorough theoretical and algebraic veri�cations. Obviously, geometric approaches provide criti-
cal intuition and motivations to learners and algebraic approaches challenge those students who want
to do more. This example also shows that many complex topics in applied disciplines can be ex-
plored from a mathematical point of view when learners are empowered with proper knowledge both
in subject matter and also in skills of manipulating latest technological tools.
Next we explore one example of �nding the global minimum value of total squared distances

among non-intersecting curves in the plane and surfaces in the space. The geometric interpretations
will help learners appreciate the use of the Lagrange multipliers method and ideas learned from Linear
Algebra.

Example 3 We are given four convex surfaces in the space, represented by the orange, yellow, blue
and purple surfaces (shown in Figure 10) which we will call S1; S2 S3 and S4 respectively. We want
to �nd points A;B;C andD on S1 (orange or the one at the left lower corner); S2 (yellow or the one
at the right lower corner); S3 (blue or the one at the upper right) and S4 (the purple or the one at the
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upper left) respectively so that the total distances AB + AC + AD achieves its minimum.

Figure 10. The shortest total squared distances among four convex surfaces

The details of this example can be found in [17]. This problem was started when we ask the
following preliminary questions:

� If we are given two non-intersecting curves or surfaces in their respective domains, what is the
shortest distance between these two curves and surfaces? With the exploration using a dynamic
geometry software, it is not dif�cult to see the minimum distance occurs when the line segment
connecting two points at two respective curves or surfaces is perpendicular to the each of the
tangent lines or tangent planes at respective points. We demonstrate this by noting the following
two Figures 11(a) and 11(b).

Figures 11 (a) and (b) Minimum distance between two curves and two surfaces.

� We extend the idea to �nding the total shortest squared distances from one curve (say sinusoidal
curve below) to two other curves-one is parabolic and the other one is a circle-by observing the
following Figure 12. Does this diagram say anything about how we should position the normal
vector at the point on the sinusoidal curve in relation to two other vectors? This will be clear
later.
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Figure 12. Shortest total squared distance from one curve to two other curves.

We note that the key observations for �nding the shortest total squared distances AB+AC+AD;
described in Figure 10, from a geometric point of view can be summarized as follows:

1. The vector AB should be parallel to the normal vector of the surface S2 at B. This is equivalent
to

AB = �2 (rS2 at B) for some �2: (7)

2. The vector AC should be parallel to the normal vector of the surface S3 at C. This is equivalent
to

AC = �3 (rS3 at C) for some �3: (8)

3. The vector AD should be parallel to the normal vector of the surface S4 atD:This is equivalent
to

AD = �4 (rS2 at D) for some �4: (9)

To achieve the minimum distance for AB + AC + AD, we should also place point A so that the
normal vector of S1 at A is in the same direction of AB + AC + AD: This is equivalent to say we
can �nd �1 so that

�1 (rS1 at A) = �2 (rS2 at B) + �3 (rS3 at C) + �4 (rS2 at D) : (10)
The following Theorem sums up what we discussed above, the proof can be found in [17].

Theorem 4 If the total squared distances function

f(x1;x2; ; ; ;xp) = jx1 � x2j2 + jx1 � x3j2 + ::: jx1 � xpj2 has a global value, (11)

where xi = (xi1; xi2; :::; xin); i = 1; 2; :::p; subject to p constraints

g1(x1) = c1; g2(x2) = c2; :::; and gp(xp) = cp; (12)

at x0 = (x�1; x
�
2; ; ; ; x

�
p) in its closed and bounded domain, then we can �nd coef�cients, �j; j =

1; 2; :::p; so that

�1rg1(x0) =
pX
j=2

�jrgj(x0): (13)
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This example further shows that there are plenty of interesting problems awaiting us to explore if
learners are properly introduced to the latest technological tools and have an opportunity to engage
with an appropriate dynamic content. It shows the importance for students to be able to integrate math-
ematics ideas they learned in Calculus and Linear Algebra. Therefore, when we consider mathematics
reform, we need to consider hyperlinking the content properly. This example further demonstrates
that geometrical interpretations of a problem will provide crucial intuition and motivation for students
grasping key concepts when solving a problem. The intuition will further assist students setting up
conjectures and strategies of how to manipulate a CAS timely and properly to verify their conjectures.
In this section we presented several examples of dynamic core which include technology based

activities designed to: 1)improve learners' subject matter knowledge of aforementioned mathematical
topics by using multiple representations; 2) increase teachers' specialized and horizon content knowl-
edge of mathematics; and 3) show how mathematics can be taught in the context of apply disciplines.

4 Discussion
We proposed that dynamic core has an important role in developing preservice teachers' subject matter
knowledge of mathematics. We used the bicycle mechanism, two wheels connected by a chain, as a
metaphor to describe the connection between dynamic and static cores. Affect of the dynamic core
can bring a type of change in mathematics classroom discourse that leads to learners' development of
conceptual knowledge of mathematics, and preservice teachers' development of specialized content
knowledge and knowledge at the mathematical horizon. In addition, this affect of dynamic core brings
`motion' to a static core that can be responsible for development of learners' procedural knowledge
of mathematics and preservice teachers' common content knowledge of mathematics. On the other
hand, the implementation of static course core can transform a classroom discourse in a way that might
affect the quality of learners' engagement with dynamic core. As learners develop more procedural
knowledge and teachers develop more common content knowledge, they can continue to acquire
conceptual knowledge, SCK, and KMH.
In this paper, we presented three technology based mathematical conceptual activities, as part

of our dynamic core, designed to improve teachers' mathematical knowledge for teaching the mean
value theorem, the Cauchy mean value theorem, the inverse image of parametric curves, and the
global minimum of total squared distances among non-intersecting curves. In the spring of 2009,
the lead author implemented all three activities in his undergraduate mathematics course titled Top-
ics in Mathematics-Mathematics and Technology. According to the data gathered from the course
evaluation, many preservice teachers enjoyed this technology based class. As a result, they built con-
ceptual knowledge of the corresponding mathematical ideas. Based on classroom observations, these
activities help to develop learners' representational �uency of aforementioned topics and deepen their
conceptual understanding of these mathematical topics. Since it is challenging to measure procedural
and conceptual knowledge directly, an analysis can be based on assessment of relationship between
procedural and conceptual tasks representing these knowledge types ([7]). Therefore it is important
to continue development and implementation of the types of activities described in this paper.
Providing adequate subject matter knowledge and inspiring creative thinking skills are pivotal in

a mathematics curriculum. Technology cannot solve all our problems but can assist us in achieving
the balance between an amount and type of mathematics knowledge that learners need to acquire to
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be successful mathematics teachers. Implementing technological tools into teaching and learning is
not a trivial task and it will be an ongoing pedagogical issue for many years to come. It is imperative,
in our view, to build a curriculum where teachers need to know when and how to introduce a subject
with lots of mathematical intuition and motivations so mathematics is more accessible and interesting
to more students at younger ages. Also, technological tools can be powerful in developing teachers'
own conceptual understandings of mathematics as well as their mathematical knowledge for teaching
mathematics.
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